16 research outputs found

    Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging

    Get PDF

    Dorsomedial striatum involvement in regulating conflict between current and presumed outcomes

    No full text
    The balance between automatic and controlled processing is essential to human flexible but optimal behavior. On the one hand, the automation of habitual behavior and processing is indispensable, and, on the other hand, strategic processing is needed in light of unexpected, conflicting, or new situations. Using ultra-high-field high-resolution functional magnetic resonance imaging (7 T-fMRI), the present study examined the role of subcortical structures in mediating this balance. Participants were asked to judge the congruency of sentences containing a semantically ambiguous or unambiguous word. Ambiguous sentences had three possible resolutions: dominant meaning, subordinate meaning, and incongruent. The dominant interpretation represents the most habitual response, whereas both the subordinate and incongruent options clash with this automatic response, and, hence, require cognitive control. Moreover, the subordinate resolution entails a less expected but correct outcome, while the incongruent condition is simply wrong. The current results reveal the involvement of the anterior dorsomedial striatum in modulating and resolving conflict between actual and expected outcomes, and highlight the importance of cortical and subcortical cooperation in this process

    In favor of general probability distributions: lateral prefrontal and insular cortices respond to stimulus inherent, but irrelevant differences.

    No full text
    A key aspect of optimal behavior is the ability to predict what will come next. To achieve this, we must have a fairly good idea of the probability of occurrence of possible outcomes. This is based both on prior knowledge about a particular or similar situation and on immediately relevant new information. One question that arises is: when considering converging prior probability and external evidence, is the most probable outcome selected or does the brain represent degrees of uncertainty, even highly improbable ones? Using functional magnetic resonance imaging, the current study explored these possibilities by contrasting words that differ in their probability of occurrence, namely, unbalanced ambiguous words and unambiguous words. Unbalanced ambiguous words have a strong frequency-based bias towards one meaning, while unambiguous words have only one meaning. The current results reveal larger activation in lateral prefrontal and insular cortices in response to dominant ambiguous compared to unambiguous words even when prior and contextual information biases one interpretation only. These results suggest a probability distribution, whereby all outcomes and their associated probabilities of occurrence-even if very low-are represented and maintained

    Neurophysiological mechanisms involved in language learning in adults

    No full text
    Little is known about the brain mechanisms involved in word learning during infancy and in second language acquisition and about the way these new words become stable representations that sustain language processing. In several studies we have adopted the human simulation perspective, studying the effects of brain-lesions and combining different neuroimaging techniques such as event-related potentials and functional magnetic resonance imaging in order to examine the language learning (LL) process. In the present article, we review this evidence focusing on how different brain signatures relate to (i) the extraction of words from speech, (ii) the discovery of their embedded grammatical structure, and (iii) how meaning derived from verbal contexts can inform us about the cognitive mechanisms underlying the learning process. We compile these findings and frame them into an integrative neurophysiological model that tries to delineate the major neural networks that might be involved in the initial stages of LL. Finally, we propose that LL simulations can help us to understand natural language processing and how the recovery from language disorders in infants and adults can be accomplished
    corecore